Муниципальное казённое общеобразовательное учреждение «Большескуратовская средняя общеобразовательная школа»

Рекомендовано к реализации Педагогическим советом Протокол от 31.08.2023 №8

Утверждаю: Директор школы: Васильева Н.С. Приказ от 31.08.2023 №90-а

Рабочая программа

предмета

АСТРОНОМИЯ

10-11 классы

Рабочую программу составила: Алдонина С. В.

Пояснительная записка

Нормативные основания:

- 1. Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».
- 2. Федеральный государственный общеобразовательный стандарт среднего общего образования (приказ Минобрнауки РФ № 413 от 17.05.2012 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» (с изменениями и дополнениями).
- 3. Основная образовательная программа среднего общего образования МКОУ «Большескуратовская СОШ»
- 4. СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления молодежи»
- 5. Программы: Астрономия. Базовый уровень. 11 класс. Е.К. Страут. М.: Дрофа, 2018; Рабочей программы: Астрономия. Базовый уровень. 11 класс: учебно-методическое пособие (Страут Е.К.), М.: Дрофа, 2017. В них также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для среднего общего образования.

Общая характеристика учебного предмета

Астрономия в российской школе всегда рассматривалась как курс, который, завершая физико-математическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения.

Курс астрономии призван способствовать формированию современной научной картины мира, раскрывая развитие представлений о строении Вселенной как одной из важнейших сторон длительного и сложного пути познания человечеством окружающей природы и своего места в ней.

Особую роль при изучении астрономии должно сыграть использование знаний, полученных учащимися по другим естественнонаучным предметам, в первую очередь по физике.

Материал, изучаемый в начале курса в теме «Основы практической астрономии», необходим для объяснения наблюдаемых невооруженным глазом астрономических явлений. В организации наблюдений могут помочь компьютерные приложения для отображения звездного неба. Такие приложения позволяют ориентироваться среди мириад звезд в режиме реального времени, получить информацию по наиболее значимым космическим объектам, подробные данные о планетах, звездах, кометах, созвездиях, познакомиться со снимками планет.

Астрофизическая направленность всех последующих тем курса соответствует современному положению в науке. Главной задачей курса становится систематизация обширных сведений о природе небесных тел, объяснение существующих закономерностей и раскрытие физической сущности наблюдаемых во Вселенной явлений. Необходимо особо подчеркивать, что это становится возможным благодаря широкому использованию физических теорий, а также исследований излучения небесных тел, проводимых практически по всему спектру электромагнитных волн не только с поверхности Земли, но и с космических аппаратов. Вселенная предоставляет возможность изучения таких состояний вещества и полей таких

характеристик, которые пока недостижимы в земных лабораториях. В ходе изучения курса важно сформировать представление об эволюции неорганической природы как главном достижении современной астрономии.

Целями изучения астрономии на данном этапе обучения являются:

- осознание принципиальной роли астрономии в познании фундаментальных законов природы и формировании современной естественнонаучной картины мира;
- приобретение знаний о физической природе небесных тел и систем, строении и эволюции Вселенной, пространственных и временных масштабах Вселенной, наиболее важных астрономических открытиях, определивших развитие науки и техники;
- овладение умениями объяснять видимое положение и движение небесных тел принципами определения местоположения и времени по астрономическим объектам, навыками практического использования компьютерных приложений для определения вида звездного неба в конкретном пункте для заданного времени;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний по астрономии с использованием различных источников информации и современных информационных технологий;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни;
- формирование научного мировоззрения;
- формирование навыков использования естественнонаучных и особенно физико-математических знаний для объективного анализа устройства окружающего мира на примере достижений современной астрофизики, астрономии и космонавтики.

Место предмета в учебном плане

Изучение курса рассчитано на 35 часов за два года обучения. При планировании 1 часа в неделю целесообразно начать изучение курса во втором полугодии в 10 классе и закончить в первом полугодии в 11 классе.

Важную роль в освоении курса играют проводимые во внеурочное время собственные наблюдения учащихся. Специфика планирования этих наблюдений определяется двумя обстоятельствами. Во-первых, они (за исключением наблюдений Солнца) должны проводиться в вечернее или ночное время. Во-вторых, объекты, природа которых изучается на том или ином уроке, могут быть в это время недоступны для наблюдений. При планировании наблюдений этих объектов, в особенности планет, необходимо учитывать условия их видимости.

Основные типы учебных занятий:

- урок изучения нового учебного материала;
- урок закрепления и применения знаний;
- урок практикум
- урок обобщающего повторения и систематизации знаний;
- урок контроля знаний и умений.

Основным типом урока является комбинированный.

Формы организации учебного процесса: индивидуальные, групповые, индивидуально-групповые, фронтальные.

На уроках используются такие формы занятий как:

- практические занятия;
- тренинг;
- консультация.

Формы контроля:

В ходе изучения данного курса астрономии проводятся тестовые и самостоятельные работы, занимающие небольшую часть урока (от 10 до 20 минут)

Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала; содержание определяются учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса. Итоговые контрольные работы проводятся в конце учебного года.

Методы обучения: стимулирования мотивации учения, организации и осуществления учебных действий и операций, контроля и самоконтроля.

Результаты освоения курса

Личностные результаты:

- формирование умения управлять своей познавательной деятельностью, ответственное отношение к учению, готовность и способность к саморазвитию и самообразованию, а также осознанному построению индивидуальной образовательной деятельности на основе устойчивых познавательных интересов;
- формирование познавательной и информационной культуры, в том числе навыков самостоятельной работы с книгами и техническими средствами информационных технологий;
- формирование убежденности в возможности познания законов природы и их использования на благо развития человеческой цивилизации;
- формирование умения находить адекватные способы поведения, взаимодействия и сотрудничества в процессе учебной и внеурочной деятельности, проявлять уважительное отношение к мнению оппонента в ходе обсуждения спорных проблем науки.

Предметные результаты:

- обеспечить достижение планируемых результатов освоения основной образовательной программы;
- создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности (системно-деятельностный подход).
 - В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Метапредметные результаты:

- находить проблему исследования, ставить вопросы, выдвигать гипотезу, предлагать альтернативные способы решения проблемы и выбирать из них наиболее эффективный;
- классифицировать объекты исследования, структурировать изучаемый материал, аргументировать свою позицию, формулировать выводы и заключения;
- анализировать наблюдаемые явления и объяснять причины их возникновения;

- на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, мысленного эксперимента, прогнозирования;
- выполнять познавательные и практические задания, в том числе проектные;
- извлекать информацию из различных источников (включая средства массовой информации и интернет-ресурсы) и критически ее оценивать;
- готовить сообщения и презентации с использованием материалов, полученных из Интернета и других источников.

Содержание курса

Предмет астрономии (2 ч)

Астрономия, ее связь с другими науками. Роль астрономии в развитии цивилизации. Структура и масштабы Вселенной. Особенности астрономических методов исследования. Наземные и космические телескопы, принцип их работы. Всеволновая астрономия: электромагнитное излучение как источник информации о небесных телах. Практическое применение астрономических исследований. История развития отечественной космонавтики. Первый искусственный спутник Земли, полет Ю. А. Гагарина. Достижения современной космонавтики.

Основы практической астрономии (5 ч)

Звезды и созвездия. Видимая звездная величина. Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездные карты. Видимое движение звезд на различных географических широтах. Связь видимого расположения объектов на небе и географических координат наблюдателя. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Видимое движение и фазы Луны. Затмения Солнца и Луны. Время и календарь.

Строение Солнечной системы (2 ч)

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет.

Законы движения небесных тел (5 ч)

Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Природа тел Солнечной системы (8 ч)

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Космические лучи. Исследования Луны космическими аппаратами. Пилотируемые поле- ты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники и кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды. Метеоры, болиды и метеориты. Астероидная опасность.

Солнце и звезды (6 ч)

Излучение и температура Солнца. Состав и строение Солнца. Методы астрономических исследований; спектральный анализ. Физические методы теоретического исследования. Закон Стефана— Больцмана. Источник энергии Солнца. Атмосфера

Солнца. Солнечная активность и ее влияние на Землю. Роль магнитных полей на Солнце. Солнечно-земные связи.

Звезды: основные физико-химические характеристики и их взаимосвязь. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Эффект Доплера. Диаграмма «спектр — светимость» («цвет — светимость»). Массы и размеры звезд. Двойные и кратные звезды. Гравитационные волны. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы. Закон смещения Вина.

Наша Галактика — Млечный Путь (2 ч)

Наша Галактика. Ее размеры и структура. Звездные скопления. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы (темная материя).

Строение и эволюция Вселенной (2 ч)

Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Эволюция Вселенной. Нестационарная Все- ленная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной.

«Темная энергия» и антитяготение.

Жизнь и разум во Вселенной (2 ч)

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики и радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

Примерный перечень наблюдений

Наблюдения невооруженным глазом

Основные созвездия и наиболее яркие звезды осеннего, зимнего и весеннего неба. Изменение их положения с течением времени.

Движение Луны и смена ее фаз.

Наблюдения в телескоп

Рельеф Луны.

Фазы Венеры.

Mapc.

Юпитер и его спутники.

Сатурн, его кольца и спутники.

Солнечные пятна (на экране).

Двойные звезды.

Звездные скопления (Плеяды, Гиады).

Большая туманность Ориона.

Туманность Андромеды.

Требования к уровню подготовки выпускников

В результате изучения астрономии на базовом уровне ученик должен

знать/понимать смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороид, планета, спутник, звезда, Солнечная система, Галактика, Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение, Большой Взрыв, черная дыра;

смысл физических величин: парсек, световой год, астрономическая единица, звездная величина;

смысл физического закона Хаббла;

основные этапы освоения космического пространства;

гипотезы происхождения Солнечной системы;

основные характеристики и строение Солнца, солнечной атмосферы;

размеры Галактики, положение и период обращения Солнца относительно центра Галактики;

уметь приводить примеры: роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных диапазонов электромагнитных излучений для получения ин- формации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю;

описывать и объяснять: различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы «цвет — светимость», физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение

химических элементов, красное смещение с помощью эффекта Доплера;

характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;

находить на небе основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;

использовать компьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии; отделения ее от лженаук; оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.

Тематическое планирование

Содержание (разделы)	Кол-во часов	Кол-во контрольных работ
10 класс		
Астрономия, её значение и связь с другими науками	2	
Практические основы астрономии	5	1
Строение солнечной системы	7	1
Природа тел солнечной системы. Итоговая контрольная работа	4	1
Итого:	18	
11 класс		
Природа тел солнечной системы	4	
Солнце и звезды	6	1
Строение и эволюция вселенной	5	1
Жизнь и разум во вселенной. Итоговая контрольная работа.	2	1
Итого:	17	

Перечень учебно - методического обеспечения

- 1. Б. А. Воронцова-Вельяминова, Е. К. Страут. Учебник «Астрономия. Базовый уровень. 11 класс» М:. :Дрофа, 2018
- 2. Программа: Астрономия. Базовый уровень. 11 класс: учебно-методическое пособие / Е. К. Страут. М.: Дрофа, 2018.
- 3. Астрономия. Базовый уровень. 11 класс : рабочая программа к УМК Б. А. Воронцова-Вельяминова, Е. К. Страута : учебно-методическое пособие /
- Е. К. Страут. М. : Дрофа, 2017.

4. Кунаш, М. А. Астрономия. 11 класс. Методическое пособие к учебнику Б. А. Воронцова-Вельяминова, Е. К. Страута «Астрономия. Базовый уровень. 11 класс» / М. А. Кунаш. — М.: Дрофа, 2018.

Использование электронных образовательных ресурсов (ЭОР) в образовательном процессе.

- 1. http://galaxy-science.ru/flash/SHkala_masshtabov_Vselennoy_v.2.swf
- 2. http://astronom-us.ru
- 3. http://www.astrotime.ru
- 4. http://school-collection.edu.ru/catalog/rubr/ 8b74c9c3-9aad-4ae4-abf9-e8229c87b786/110377
- 5. http://www.astronet.ru/db/msg/1175352/node4. html Астронет (системы небесных координат).
- 6. http://school-collection.edu.ru/catalog/rubr/ 8b74c9c3-9aad-4ae4-abf9-e8229c87b786/110377/ Единая коллекция цифровых образовательных ре- сурсов.
- 7. https://www.youtube.com/watch?v=8upIbQk_ q-0 Вращение небесной сферы.
- 8. http://www.nebulacast.com/2012/04/blog-post_ 05.html Живая Вселенная. Что такое эклиптика?
- 9. http://universetoday-rus.com/blog/2013-11-01- 1538 Гелиоцентрическая система мира
- 10. http://nasha-vselennaia.ru/?p=1823
- 11. http://in-space.info/dictionary/konfiguratsiyaplanet Космос и жизнь. Конфигурация планет.
- 12. http://shkolo.ru/vidimyie-dvizheniya-planet-ikonfiguratsii-planet/ Справочник по астрономии. Видимые движения и конфигурации планет.
- 13. http://www.astronet.ru/db/msg/1191510/chapter3_8.html Астронет. Видимое движение и кон- фигурации планет.
- 14. http://www.afportal.ru/astro/model Астрофи- зический портал. Интерактивный план Солнечной системы.
- 15. http://elementy.ru/trefil/23/Zakon_vsemirnogo_tyagoteniya_Nyutona Элементы большой науки.
- 16. https://www.youtube.com/watch?v=q95BlNdPb R4 Вечное противодействие. Приливы и отливы.
- 17. http://www.youtube.com/watch?v=azYacU6u 3Io Приливы и отливы.
- 18. http://ria.ru/science/20090720/177936175. html РИА-Новости. История исследований Луны.
- 19. http://ria.ru/spravka/20140104/986305409. html РИА_Новости. История исследования Марса.
- 20. http://volamar.ru/subject/04sirius/view_post. php?cat=1&id=18&page=1 Каталог статей. Космический аппарат «Хаббл».
- 21. http://ukhtoma.ru/universe8.htm Строение и жизнь во Вселенной. Происхождение Солнечной си- стемы. 91
- 22. http://www.youtube.com/watch?v=eS_MXWj_ pbs Образование Солнечной системы.
- 23. http://mks-onlain.ru/model-solnechnoj-sistemy/ Строение Солнечной системы
- 24. https://www.youtube.com/watch?v=ZPNnA7XeG 2Y Природа Северного края движение Луны в облаках
- 25. http://www.sai.msu.su/ng/solar/solar_sostav. html Планеты Солнечной системы.
- 26. <u>дополнительные материалы к учебнику https://drofa-ventana.ru/material/dopolnitelnye-materialy-k-uchebniku-b-a-vorontsova-velyaminova-e-k-str/</u>

No	Наименование	Количество
1	Учительский стол	1
2	Демонстрационный стол	1
3	Шкаф	5
4	Учительский стул	1
5	Парты двухместные	6
6	Стулья ученические	12
7	Доска	1
8	Доска Smart и оборудование к ней	1
		комплект
9	Ноутбук	1

Используемые технологии:

развивающее обучение;

- -проблемное обучение;
- личностно ориентированные технологии
- -разноуровневое обучение;
- -коллективную систему обучения;
- -технологию изучения изобретательских задач (ТРИЗ);
- -исследовательские методы в обучении;
- -проектные методы обучения;
- -технологию использования в обучении игровых методов: ролевых, деловых и других видов обучающих игр;
- -обучение в сотрудничестве (командная, групповая работа);
- -информационно-коммуникационные технологии;
- -здоровьесберегающие технологии.

Поурочно-тематическое планирование 10 класс

№	Тема урока	Содержание по темам	Основные виды деятельности	Домашнее
урока			учащихся	задание
Астрон	омия, её значение и связь с друг	ими науками (2 ч)		
1	Предмет астрономии.	Астрономия, ее связь с другими науками. Развитие	Поиск примеров, подтверждающих	§ 1
2	Наблюдения – основа	астрономии было вызвано практическими	практическую направленность	§ 2
	астрономии.	потребностями человека, начиная с глубокой	астрономии. Применение знаний,	3
	-	древности. Астрономия, математика и физика —	полученных в курсе физики, для	
		их развитие в тесной связи друг с другом.	описания устройства телескопа.	
		Структура и масштабы Вселенной. Наземные и	Характеристика преимуществ	
		космические приборы и методы исследования	наблюдений, проводимых из космоса	
		астрономических объектов. Телескопы и		
		радиотелескопы. Всеволновая астрономия		
Практи	ческие основы астрономии (5 ч)			
3	Звёзды и созвездия.	Звездная величина как характеристика	Применение знаний, полученных	§ 3,4
	Небесные координаты и	освещенности, создаваемой звездой.	в курсе географии, о составлении карт в	
	звёздные карты.	Согласно шкале звездных величин разность на 5	различных проекциях. Работа со звездной	
		величин, различие в потоках света в 100 раз.	картой при организации и проведении	
		Экваториальная система координат: прямое	наблюдений. Характеристика	
		восхождение и склонение. Использование звездной	отличительных особенностей суточного	
		карты для определения объектов, которые можно	движения звезд на полюсах, экваторе и в	
		наблюдать в заданный момент времени.	средних широтах Земли, особенностей	
		Высота полюса мира над горизонтом и ее	суточного движения Солнца на полюсах,	
		зависимость от географической широты места	экваторе и в средних широтах Земли.	
		наблюдения. Небесный меридиан. Кульминация	Изучение основных фаз Луны. Описание	
		светил. Определение географической широты по	порядка смены фаз Луны, взаимного	
		измерению высоты звезд в момент их	расположения Земли, Луны и Солнца в	
		кульминации. Эклиптика и зодиакальные	моменты затмений. Анализ причин, по	
4	Видимое движение звёзд на	обращения Луны вокруг Земли и вокруг своей оси	которым Луна всегда обращена к Земле	\$ 5
-	различных географических	— сидерический (звездный) месяц. Синодический	одной стороной, необходимости введения	§ 5
	широтах.	месяц — период полной смены фаз Луны.	часовых поясов, високосных лет и нового	
5	Годичное движение Солнца	Условия наступления солнечных и лунных	календарного стиля. Объяснение причин,	\$ 6.7
3	по небу. Эклиптика.	затмений. Их периодичность. Полные, частные и	по которым затмения Солнца и Луны не	§ 6,7
	Движение и фазы Луны.	кольцеобразные затмения Солнца. Полные и	происходят каждый месяц. Подготовка и	
	движение и фазы луны.	-	-	

6	Затмения Солнца и Луны.	частные затмения Луны. Предвычисление будущих	выступление с презентациями и	§ 8,9
	Время и календарь.	затмений. Точное время и определение	сообщениями	
7	Контрольная работа № 1	географической долготы. Часовые пояса. Местное		
	по теме «Практические	и поясное, летнее и зимнее время. Календарь —		
	основы астрономии».	система счета длительных промежутков времени.		
		История календаря. Високосные годы. Старый и		
		новый стиль. Контрольная работа № 1 по теме		
		«Практические основы астрономии».		
		Тема проекта или исследования: «Определение		
		скорости света по наблюдениям моментов		
		затмений спутника Юпитера». Наблюдения		
		(невооруженным глазом):созвездия. Наклон		
		эклиптики к небесному экватору. Положение		
		Солнца на эклиптике в дни равноденствий и		
		солнцестояний. Изменение в течение года		
		продолжительности дня и ночи на различных		
		географических широтах. Луна — ближайшее к		
		Земле небесное тело, ее единственный		
		естественный спутник. Период «Основные		
		созвездия и наиболее яркие звезды осеннего,		
		зимнего и весеннего неба. Изменение их		
		положения с течением времени», «Движение Луны		
		и смена ее фаз»		
	ие солнечной системы (7 ч)			
8	Развитие представлений о	Геоцентрическая система мира Аристотеля —	Объяснение петлеобразного движения	§ 10
	строении мира	Птолемея. Система эпициклов и дифферентов для	планет с использованием эпициклов	_
9	Конфигурация планет.	объяснения петлеобразного движения планет.	и дифферентов. Описание условий	§ 11
	Синодический период.	Создание Коперником гелиоцентрической системы	видимости планет, находящихся в	_
10	Законы движения планет	мира. Роль Галилея в становлении новой системы	различных конфигурациях.	§ 12
	Солнечной системы.	мира. Внутренние и внешние планеты.	Анализ законов Кеплера, их значения для	
11	Определение расстояний и	Конфигурации планет: противостояние и	развития физики и астрономии.	§ 13
	размеров тел.	соединение. Периодическое изменение условий	Объяснение механизма возникновения	
12	Движение небесных тел под	видимости внутренних и внешних планет. Связь	возмущений и приливов.	§ 14
	действием сил тяготения.	синодического и сидерического (звездного)	Подготовка презентаций и сообщений и	
13	Практическая работа с	периодов обращения планет. Три закона Кеплера.	выступление с ними.	Задание в

	планом Солнечной системы.	Эллипс. Изменение скорости движения планет по	Решение задач	тетради
14	Контрольная работа № 2	эллиптическим ор- битам. Открытие Кеплером		
	по теме «Строение	законов движения планет — важный шаг на пути		
	Солнечной системы».	становления механики. Третий закон — основа для		
		вычисления относительных расстояний планет от		
		Солнца. Размеры и форма Земли. Триангуляция.		
		Горизонтальный параллакс. Угловые и линейные		
		размеры тел Солнечной системы. Подтверждение		
		справедливости закона тяготения для Луны и		
		планет. Возмущения в движении тел Солнечной		
		системы. Открытие планеты Нептун. Определение		
		массы небесных тел. Масса и плотность Земли.		
		Приливы и отливы. Время старта КА и траектории		
		полета к планетам и другим телам Солнечной		
		системы. Выполнение маневров, необходимых для		
		посадки на поверхность планеты или выхода на		
		орбиту вокруг нее. Практическая работа с планом		
		Солнечной системы. Контрольная работа № 2		
		по теме «Строение Солнечной системы».		
		Тема проекта или исследования:		
		«Конструирование и установка глобуса Набокова».		
		Наблюдения (в телескоп): «Рельеф Луны»,		
		«Фазы Венеры», «Марс», «Юпитер и его		
		спутники», «Сатурн, его кольца и спутники»		
1 1	а тел солнечной системы. (4 ч)			
15	Общие характеристики	Гипотеза о формировании всех тел Солнечной	Анализ основных положений	§ 15
	планет.	системы в процессе длительной эволюции	современных представлений о	
16	Солнечная система как	холодного газопылевого облака. Объяснение их	происхождении тел Солнечной системы,	§ 16
	комплекс тел, имеющих	природы на основе этой гипотезы. Краткие	табличных данных, признаков сходства и	
	общее происхождение	сведения о природе Земли. Условия на	различий изучаемых объектов,	
17	Система Земля-Луна	поверхности Луны. Два типа лунной поверхности	классификация объектов, определения	§ 17
18	Итоговая контрольная работа	— моря и материки. Горы, кратеры и другие	понятия «планета». Сравнение природы	
		формы рельефа. Процессы формирования	Земли с природой Луны на основе знаний	
		поверхности Луны и ее рельефа. Результаты	из курса географии. Объяснение причины	
		исследований, проведенных автоматическими	отсутствия у Луны атмосферы, причин	

аппаратами и астронавта- ми. Внутреннее строение	существующих различий, процессов,
Луны. Химический состав лунных пород.	происходящих в комете при изменении
Обнаружение воды на Луне. Перспективы	ее расстояния от Солнца. Описание
освоения Луны.	основных форм лунной поверхности и их
Итоговая контрольная работа.	происхождения, внешнего вида
	астероидов и комет.

Поурочно-тематическое планирование 11 класс

№	Тема урока	Содержание по темам	Основные виды деятельности	Домашнее
урока			учащихся	задание
Приро	да тел солнечной системы. (4 ч)			
1	Планеты земной группы.	Анализ основных характеристик планет.	На основе знаний законов физики	§ 18
2	Далёкие планеты.	Разделение планет по размерам, массе и средней	объяснение явлений и процессов,	§ 19
3	Малые тела Солнечной	плотности. Планеты земной группы и планеты-	происходящих в атмосферах планет,	§ 20
	системы.	гиганты. Их различия. Сходство внутреннего	описание природы планет-гигантов,	3
4	Практическая работа	строения и химического состава планет земной	описание и объяснение явлений метеора	Задание в
	«Две группы планет	группы. Рельеф поверхности. Вулканизм и	и болида. Описание и сравнение природы	тетради
	Солнечной системы».	тектоника. Метеоритные кратеры. Особенности	планет земной группы. Участие в	-
		температурных условий на Меркурии, Венере и	дискуссии. Подготовка презентаций и	
		Марсе. Отличия состава атмосферы Земли от	сообщений и выступление с ними	
		атмосфер Марса и Венеры. Сезонные изменения в		
		атмосфере и на поверхности Марса. Состояние		
		воды на Марсе в прошлом и в настоящее время.		
		Эволюция природы планет. Поиски жизни на		
		Марсе. Химический состав и внутреннее строение		
		планет-гигантов. Источники энергии в недрах		
		планет. Облачный покров и атмосферная		
		циркуляция. Разнообразие природы спутников.		
		Сходство природы спутников с планетами земной		
		группы и Луной. Наличие атмосфер у крупнейших		
		спутников. Строение и состав колец. Астероиды		
		главного пояса. Их размеры и численность. Малые		
		тела пояса Койпера. Плутон и другие карликовые		
		планеты. Кометы. Их строение и состав. Орбиты		
		комет. Общая численность комет. Кометное облако		

		Оорта. Астероидно-кометная опасность. Возможности и способы ее предотвращения. Одиночные метеоры. Скорости встречи с Землей. Небольшие тела (метеороиды). Метеорные потоки, их связь с кометами. Крупные тела. Явление болида, падение метеорита. Классификация метеоритов: железные, каменные, железокаменные. Практическая работа «Две группы планет Солнечной системы». Тема проекта или исследования: «Определение высоты гор на Луне по способу Галилея»		
Солнце	и звезды (6 ч)			
5	Солнце – ближайшая звезда.	Источник энергии Солнца и звезд — термоядерные	На основе знаний законов физики	§ 21
6	Расстояния до звёзд.	реакции. Перенос энергии внутри Солнца.	описание и объяснение явлений и	§ 22
	Характеристики излучения	Строение его атмосферы. Грануляция. Солнечная	процессов, наблюдаемых на Солнце.	
	звёзд.	корона. Обнаружение потока солнечных нейтрино.	Описание: процессов, происходящих при	
7	Массы и размеры звёзд.	Значение этого открытия для физики и	термоядерных реакциях; образования	§ 23
8	Переменные и	астрофизики. Проявления солнечной активности:	пятен, протуберанцев и других	§ 24
	нестационарные звёзды.	солнечные пятна, протуберанцы, вспышки, корональные выбросы массы. Потоки солнечной	проявлений солнечной активности на основе знаний о плазме, полученных в	
9	Решение задач	плазмы. Их влияние на состояние магнитосферы	курсе физики. Характеристика процессов	Задание в
10	Контрольная работа № 1 по	Земли. Магнитные бури, полярные сияния и другие	солнечной активности и механизма их	тетради
10	теме «Солнце и звезды».	геофизические явления, влияющие на радиосвязь,	влияния на Землю. Определение понятия	
	теме «солице и звезды».	сбои в линиях электропередачи. Период изменения	«звезда». Указание положения звезд на	
		солнечной активности. Звезда — природный	диаграмме «спектр — светимость»	
		термоядерный реактор. Светимость звезды.	согласно их характеристикам. Анализ	
		Многообразие мира звезд. Их спектральная	основных групп диаграммы	
		классификация. Звезды-гиганты и звезды-карлики.	«спектр — светимость». На основе	
		Диаграмма «спектр — светимость». Двойные и	знаний по физике: описание пульсации	
		кратные звезды. Звездные скопления. Их состав и	цефеид как автоколебательного процесса;	
		возраст. Цефеиды — природные	оценка времени свечения звезды по	
		автоколебательные системы. Зависимость «период	известной массе запасов водорода;	
		— светимость». Затменно-двойные звезды.	описание природы объектов на конечной	
		Вспышки новых — явление в тесных системах	стадии эволюции звезд.	

		двойных звезд. Открытие «экзопланет» — планет и	Подготовка презентаций и сообщений и	
		планетных систем вокруг других звезд.	выступление с ними.	
		Зависимость скорости и продолжительности	Решение задач	
		эволюции звезд от их массы. Вспышка сверхновой		
		— взрыв звезды в конце ее эволюции. Конечные		
		стадии жизни звезд: белые карлики, нейтронные		
		звезды (пульсары), черные дыры.		
		Контрольная работа № 1 по теме «Солнце и		
		звезды».		
		Темы проектов или исследований:		
		«Определение условий видимости планет в		
		текущем учебном году», «Наблюдение солнечных		
		пятен с помощью камеры-обскуры»,		
		«Изучение солнечной активности по наблюдению		
		солнечных пятен», «Определение температуры		
		Солнца на основе измерения солнечной		
		постоянной», «Наблюдение метеорного потока»,		
		«Определение расстояния до удаленных объектов		
		на основе измерения параллакса», «Изучение		
		переменных звезд различного типа».		
		Наблюдения (в телескоп): «Солнечные пятна» (на		
		экране), «Двойные звезды»		
Строени	е и эволюция Вселенной (5 ч)			
11	Наша Галактика.	Размеры и строение Галактики. Расположение и	Описание строения и структуры	§ 25 п.1,2
12	Наша Галактика.	движение Солнца. Плоская и сферическая	Галактики, процесса формирования звезд	§ 25 п.3,4
13	Другие звёздные системы –	подсистемы Галактики. Ядро и спиральные рукава	из холодных газопылевых облаков.	§ 26
_	галактики.	Галактики. Вращение Галактики и проблема	Изучение объектов плоской и	3 20
14	Основы современной	«скрытой» массы. Радиоизлучение межзвездного	сферической подсистем.	§ 27
	космологии.	вещества. Его состав. Области звездообразования.	Объяснение на основе знаний по физике	3 -
15	Контрольная работа № 2 по	Обнаружение сложных органических молекул.	различных механизмов радиоизлучения.	
	теме «Строение и эволюция	Взаимосвязь звезд и межзвездной среды.	Определение типов галактик.	
	Вселенной».	Планетарные туманности — остатки вспышек	Применение принципа Доплера для	
		сверхновых звезд. Спиральные, эллиптические и	объяснения «красного смещения».	
		неправильные галактики. Их отличительные	Доказательство справедливости закона	
		особенности, размеры, масса, количество звезд.	Хаббла для наблюдателя,	

	T			
		Сверхмассивные черные дыры в ядрах галактик.	расположенного в любой галактике.	
		Квазары и радиогалактики. Взаимодействующие	Подготовка презентаций и сообщений и	
		галактики. Скопления и сверхскопления галактик	выступление с ними	
		Общая теория относительности. Стационарная		
		Вселенная А. Эйнштейна. Вывод А. А. Фридмана о		
		нестационарности Вселенной. «Красное		
		смещение» в спектрах галактик и закон Хаббла.		
		Расширение Вселенной происходит однородно и		
		изотропно. Гипотеза Г. А. Гамова о горячем начале		
		Вселенной, ее обоснование и подтверждение.		
		Реликтовое излучение. Теория Большого взрыва.		
		Образование химических элементов. Формирование		
		галактик и звезд. Ускорение расширения		
		Вселенной. «Темная энергия» и антитяготение.		
		Контрольная работа № 2 по теме «Строение и		
		эволюция Вселенной».		
		Тема проекта или исследования: «Исследование		
		ячеек Бенара».		
		Наблюдения (в телескоп): «Звездные скопления		
		(Плеяды, Гиады)», «Большая туманность Ориона»,		
		«Туманность Андромеды»		
Жизнь	и разум во Вселенной (2 ч)			
16	Жизнь и разум во Вселенной	Проблема существования жизни вне Земли.	Подготовка презентаций и сообщений и	§ 28
17	Итоговая контрольная работа	Условия, необходимые для развития жизни.	выступление с ними.	5
-	Titorozwi nempembiwi puestu	Поиски жизни на планетах Солнечной системы.	Участие в дискуссии	
		Сложные органические соединения в космосе.		
		Современные возможности радиоастрономии и		
		космонавтики для связи с		
		другими цивилизациями. Планетные системы у		
		других звезд. Человечество заявляет о своем		
		существовании.		
		Тема проекта или исследования:		
		«Конструирование школьного планетария»		